1.在进行
gdb pythonr XX.pywhere
调试时,报出以下错误:
1)每次运行都开38个线程,是否是线程超载[New Thread 0x7ffff2fd2700 (LWP 7415)]
[New Thread 0x7ffff27d1700 (LWP 7416)][New Thread 0x7fffeffd0700 (LWP 7417)][New Thread 0x7fffeb7cf700 (LWP 7418)][New Thread 0x7fffe8fce700 (LWP 7419)][New Thread 0x7fffe67cd700 (LWP 7420)][New Thread 0x7fffe3fcc700 (LWP 7421)][New Thread 0x7fffe17cb700 (LWP 7422)][New Thread 0x7fffdefca700 (LWP 7423)][New Thread 0x7fffdc7c9700 (LWP 7424)][New Thread 0x7fffd9fc8700 (LWP 7425)][New Thread 0x7fffd77c7700 (LWP 7426)][New Thread 0x7fffd4fc6700 (LWP 7427)][New Thread 0x7fffd27c5700 (LWP 7428)][New Thread 0x7fffcffc4700 (LWP 7429)][New Thread 0x7fffcd7c3700 (LWP 7430)][New Thread 0x7fffcafc2700 (LWP 7431)][New Thread 0x7fffc87c1700 (LWP 7432)][New Thread 0x7fffc5fc0700 (LWP 7433)][New Thread 0x7fffc37bf700 (LWP 7434)][New Thread 0x7fffc0fbe700 (LWP 7435)][New Thread 0x7fffbe7bd700 (LWP 7436)][New Thread 0x7fffbbfbc700 (LWP 7437)][New Thread 0x7fffb97bb700 (LWP 7438)][New Thread 0x7fffb6fba700 (LWP 7439)][New Thread 0x7fffb47b9700 (LWP 7440)][New Thread 0x7fffb1fb8700 (LWP 7441)][New Thread 0x7fffaf7b7700 (LWP 7442)][New Thread 0x7fffacfb6700 (LWP 7443)][New Thread 0x7fffaa7b5700 (LWP 7444)][New Thread 0x7fffa7fb4700 (LWP 7445)][New Thread 0x7fffa57b3700 (LWP 7446)][New Thread 0x7fffa2fb2700 (LWP 7447)][New Thread 0x7fffa07b1700 (LWP 7448)][New Thread 0x7fff9dfb0700 (LWP 7449)] [New Thread 0x7fff9b7af700 (LWP 7450)][New Thread 0x7fff98fae700 (LWP 7451)][New Thread 0x7fff967ad700 (LWP 7452)][New Thread 0x7fff93fac700 (LWP 7453)]
2)现在报出:
ERROR (theano.gpuarray): Could not initialize pygpu, support disabled。。。 File "pygpu/gpuarray.pyx", line 658, in pygpu.gpuarray.init File "pygpu/gpuarray.pyx", line 587, in pygpu.gpuarray.pygpu_initGpuArrayException: cuDeviceGet: CUDA_ERROR_INVALID_DEVICE: invalid device ordinal
先不解决这个,先尝试测试一下:
发现,在import keras,也会报上述同样的错误!
conda install mklconda install mkl-service#使用以上两句均显示:# All requested packages already installed.conda install blas
依旧不可以导入keras包。
3)将原有的conda环境删除,又新创建了环境,用conda安装了mkl之后,尝试import keras之后,仍然报错:
Using Theano backend.~/lib/python2.7/site-packages/theano/gpuarray/dnn.py:184: UserWarning: Your cuDNN version is more recent than Theano. If you encounter problems, try updating Theano or downgrading cuDNN to a version >= v5 and <= v7. warnings.warn("Your cuDNN version is more recent than "ERROR (theano.gpuarray): Could not initialize pygpu, support disabledTraceback (most recent call last): File "~/lib/python2.7/site-packages/theano/gpuarray/__init__.py", line 227, inuse(config.device) File "~/lib/python2.7/site-packages/theano/gpuarray/__init__.py", line 214, in use init_dev(device, preallocate=preallocate) File "~/lib/python2.7/site-packages/theano/gpuarray/__init__.py", line 99, in init_dev **args) File "pygpu/gpuarray.pyx", line 658, in pygpu.gpuarray.init File "pygpu/gpuarray.pyx", line 587, in pygpu.gpuarray.pygpu_initGpuArrayException: cuDeviceGet: CUDA_ERROR_INVALID_DEVICE: invalid device ordinal
在我的.theanorc配置文件中,是这么写的:
[global]floatX = float32device =cuda1
尝试去掉cuda编号?居然成功了!
Using Theano backend.~/.conda/envs/xhs/lib/python2.7/site-packages/theano/gpuarray/dnn.py:184: UserWarning: Your cuDNN version is more recent than Theano. If you encounter problems, try updating Theano or downgrading cuDNN to a version >= v5 and <= v7. warnings.warn("Your cuDNN version is more recent than "Using cuDNN version 7201 on context NoneMapped name None to device cuda: GeForce GTX 1080 Ti (0000:03:00.0)
接下来尝试解决 上述的用户警告。
由于theano已经是1.0.4最新版本,无法再进行更新,只能尝试将cuDNN版本降级。
但是使用conda list查看所有安装的包:
cudnn 6.0.21 cuda8.0_0 https://mirrors.tuna.tsinghua.edu.cn/a
#尝试此命令查看pygpu是否可用DEVICE="cuda" python -c "import pygpu; pygpu.test()"
出现以下问题:
此帮助里说,如果不是使用多个GPU可以忽略test_collectives error。
#尝试以下,python test_gpu.py~/.conda/envs/xhs/lib/python2.7/site-packages/theano/gpuarray/dnn.py:184: UserWarning: Your cuDNN version is more recent than Theano. If you encounter problems, try updating Theano or downgrading cuDNN to a version >= v5 and <= v7. warnings.warn("Your cuDNN version is more recent than "Using cuDNN version 7201 on context NoneMapped name None to device cuda: GeForce GTX 1080 Ti (0000:03:00.0)[GpuElemwise{exp,no_inplace}((float32, vector)>), HostFromGpu(gpuarray)(GpuElemwise{exp,no_inplace}.0)]Looping 1000 times took 0.192847 secondsResult is [1.2317803 1.6187935 1.5227807 ... 2.2077181 2.2996776 1.623233 ]Used the gpu
发现其使用的cudnn版本是7.2,明明是6.0但是却调用了7.2?
查看cuda的版本信息发现:
nvcc -Vnvcc: NVIDIA (R) Cuda compiler driverCopyright (c) 2005-2017 NVIDIA CorporationBuilt on Fri_Sep__1_21:08:03_CDT_2017Cuda compilation tools, release 9.0, V9.0.176
//发现安装cuda简直十分麻烦,所以下尝试一下运行程序。
Starting epoch 0...段错误 (核心已转储)
#查看分配占空间的大小ulimit -a#显示stack size (kbytes, -s) 8192
也就仅仅8M大小,实在是太小了。
改为ulimit -s 102400,仍旧段错误。
试图将其调整为更大或者unlimit时,报错:
-bash: ulimit: stack size: 无法修改 limit 值: 不允许的操作
#使用sudo提示如下:sudo: ulimit:找不到命令
在limit.conf下加了
#* soft stack unlimited
再使用ulimit -s unlimited就可以用了,但是运行程序发现仍是段错误,继续修改
#max locked memory (kbytes, -l) 64#尝试修改maxloc但是同样的方法不起作用
——————
终于解决了,在github上keras项目下发布的issue中找到了:
由于本机上的CUDA版本为9,所以又根据教程安装了CUDA8版本,以及cuDNN6.0版本,之后就可以了!!!
就是由于CUDA9不适合theano1.0!!!所以必须将版本,降版本之后就没有上述的warning了,就可以成功跑theano后端的keras代码了。